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The Problem

We suppose we are observing functional data (see [1]) indexed by spatial lo-
cations, and we wish to understand the phase variation of the curves across
space. In particular, we consider the problem of the registration or alignment
of spatially correlated functional data in order to understand the warping
away from a theoretical typical trajectory. (See [2] for the iid case.)

We in particular focus on two data sets:
• daily Covid infection data at the LAD level in England; and

• weekly death data at the NUTS 3 level in Europe.
We use these data as a proxy for the waves of the Covid-19 pandemic passing
through Europe.
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The spatial observation of functional data is also common in many
other fields, including meteorology, economics, neuroscience and ecology. We
envisage myriad applications of a spatially aware methodology for functional
registration, noting there is little prior work on this (although, see [3]).

The Model

We build our model of our functional data from two stationary random func-
tional fields, in the same vein as [4], taking into account [5]:

• The variation in amplitude is understood through the random functional
field X, representing the overall shape of the observable curve, its values
Xu : [0,1] −→R. We assume it to have predominantly rank-one variation:

Xu(t) = ξuµ(t) + δεu(t), (1)

for constant and unit-norm µ, random stationary scalar field ξ, small con-
stant δ <<

√
Varξu, and random unit-norm functional field ϵ.

• The variation in phase is understood through the random functional field h,
which represents the warping from said overall shape the observable curve
exhibits, its values hu : [0,1] −→ [0,1]. It is only assumed that hu(0) = 0, hu
is a diffeomorphism, and Ehu = id.

Putting these together, we observe (possibly with measurement error) from
the random functional field Y :

Yu(t) = Xu(h−1
u (t)). (2)

The Method

We observe Y (possibly with measurement error) at spatial locations (ui)
n
i=1

and temporal locations (tj)
m
j=1. From these data we estimate the hi thus:

1. For each i, we extend our discrete observations to continuous curves by regression, and normalise
these to make them comparable.

2. For each pair (i,k) (i , k), we then estimate the pairwise warping gik := hi ◦ h−1
k by minimising the

following target:
||Yi ◦ g −Yk||2 +λ||g − id||2, (3)

over all g in some finite-dimensional approximation of all valid warping functions, and for some
regularisation constant λ.

3. For each i, we estimate a functional variogram (cf. [6]),

2γi(uk,ul) = E||gki − gli ||2, (4)

by making the approximation 2γi(uk,ul) ≈ 2γ̃i(d(uk,ul)) for some function γ̃i; we do this by a stan-
dard parametric regression for variogram estimation.

4. We then utilise the approximation

Ei
〈
gki −Eigki, gli −Eigli

〉
≈ γ̃i(∞)− γ̃i(d(uk,ul)) =: Ĉ(i)

kl , (5)

where Ei is shorthand for taking an expectation conditional on hi, in order to estimate approximate
weights:

ŵ(i) ∝ (Ĉ(i))−11n, (6)

where 1n is a length-n vector of ones, and
∑

k ŵ
(i)
k = 1.

5. We then finally estimate the hi as a weighted mean of the (gki)k:

ĥi
−1

=
∑
k,i

ŵ
(i)
k gki. (7)

These weights are approximately optimal in the sense of minimising the MSE E||ĥi − hi ||2.

This follows standard approaches to spatial data analysis (see [7]).

Simulations

Simulations were run to estimate the MSE in the estimation of the hi, under
a variety of observation location sets (see below), covariance structures for
warping functions and amplitude models. We define the MSE as:

MSE =
1
n

n∑
i=1

E||̂h−1
i − ĥ

−1
i ||

2 (8)

It was found that the MSE was almost always reduced when compared to a
simple average methodology (a non-spatial approach; see [4]), indeed up to
by a factor of two. The results are also given below.
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Simulation Results

Locations Simple Weighted Impr.

A 0.00102 0.00086 16.0%

B 0.00103 0.00089 13.4%

C 0.00109 0.00069 36.9%

D 0.00106 0.00082 22.6%

The data provided are estimates of mean squared error under the traditional, non-
spatial (simple mean) and our spatial (weighted mean) methodologies. The observation
locations correspond to the figure on the left.

Applications

The developed methodology was applied to the first Covid wave of 2020 in
English LADs and European NUTS 3 regions. The distribution of these re-
gions are illustrated below.
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Locations of the Local Authority Districts in England*

*Excluding the Isles of Scilly and City of London.
 Source: Office for National Statistics licensed under the Open Government Licence v.3.0.

 Contains OS data © Crown copyright and database right 2023.
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Locations of the NUTS 3 Statistical Regions*

*Excluding Iceland, Turkey, Cyprus,
 the French Départements d'Outre−Mer, the Spanish Canarias, and

 the Portuguese Região Autónoma dos Açores and Região Autónoma da Madeira; and
 that were unchanged from NUTS 2013 to NUTS 2016.

 Source: Boundaries provided by Eurostat; centroids thereby calculated.

We in particular consider here the application to English LADs. The
resulting aligned curves and warping functions are given below. With
the aligned curves and warping functions, we can now perform separate
spatially-aware functional principal component analysis, for example, to un-
derstand the variation further.

Apr May Jun Jul
Date (2020)

Unaligned Covid Infection Curves

0.00 0.25 0.50 0.75 1.00
Normalised Time (Latent Clock)

Aligned Covid Infection Curves

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalised Time (Real Time)

N
o

rm
a

lis
e

d
 T

im
e

 (
L

a
te

n
t 
C

lo
ck

)

Inverse Warping Functions

References

[1] J. Ramsay and B. W. Silverman, Functional data analysis (Springer Series in Statistics).
Springer, 1997.

[2] A. Srivastava, W. Wu, S. Kurtek, E. Klassen, and J. S. Marron, “Registration of functional
data using fisher-rao metric,”

[3] X. Guo, S. Kurtek, and K. Bharath, “Variograms for kriging and clustering of spatial func-
tional data with phase variation,” Spatial statistics, vol. 51, p. 100 687, 2022.

[4] R. Tang and H.-G. Müller, “Pairwise curve synchronization for functional data,”
Biometrika, vol. 95, no. 4, pp. 875–889, 2008.

[5] A. Chakraborty and V. M. Panaretos, “Functional registration and local variations: Iden-
tifiability, rank, and tuning,” 2021.

[6] O. Gromenko, P. Kokoszka, L. Zhu, and J. Sojka, “Estimation and testing for spatially
indexed curves with application to ionospheric and magnetic field trends,” The Annals of
Applied Statistics, pp. 669–696, 2012.

[7] N. Cressie, Statistics for spatial data. John Wiley & Sons, 1993.

Luke A Barratt: lab85@cam.ac.uk John AD Aston: jada2@cam.ac.uk


